Clean Energy and Environment Research

Mechanical Engineering
University of Delaware
ME Faculty Conducting Clean Energy and Environmental Research

Fuel Cells, Batteries, and Supercapacitors

Advani Chou Hertz Prasad Roy Santare LP Wang Wei

Wind Energy

Advani Burris Prasad Schwartz

Environment

Prasad LP Wang
Center for Fuel Cell Research
Director: Ajay Prasad

1. PEM fuel cells
2. DMFC
3. SOFC
4. Hydroxide exchange membrane fuel cells

Materials

System-level

Solar Hydrogen Generation

Operational experience

Hydrogen storage

Batteries

Center for Fuel Cell Research
Director: Ajay Prasad

System-level

Materials

Hydrogen storage

Batteries

Solar Hydrogen Generation

Operational experience
Novel Materials for PEM Fuel Cells

- Novel composite membranes
- Tungsten Monocarbide catalyst
- Novel metallic GDL
- Design of flow channels using genetic algorithms

Durability Studies by Accelerated Stress Testing
- Humidity cycling
- Temperature cycling
- Freeze/thaw cycling of Nafion/MWCNT membrane

Processed Neutron Image

Water Thickness

- 2 mm
- 1.5 mm
- 1 mm
- 0.5 mm
- 0 mm
- 0 mm

Voltage, V

- 1.1
- 1.0
- 0.9
- 0.8
- 0.7
- 0.6
- 0.5
- 0.4
- 0.3
- 0.2
- 0.1

Current Density, A/cm²

- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0
- 1.2
- 1.4
- 1.6

Nafion 112

MWCNT/Nafion
Mechanics of Fuel Cell Membranes

Experimental Materials Characterization

Numerical in-situ models
And Results

Nano-structural models
UD Fuel Cell Hybrid Bus Program (2005-present)

<table>
<thead>
<tr>
<th>Bus #</th>
<th>Size</th>
<th>Stack</th>
<th>Batteries</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22-ft</td>
<td>20 kW</td>
<td>Ni-Cad</td>
<td>2007</td>
</tr>
<tr>
<td>2</td>
<td>22-ft</td>
<td>40 kW</td>
<td>Ni-Cad</td>
<td>2009</td>
</tr>
<tr>
<td>3</td>
<td>40-ft</td>
<td>60 kW</td>
<td>Li-Ti</td>
<td>2014*</td>
</tr>
<tr>
<td>4</td>
<td>40-ft</td>
<td>80 kW</td>
<td>Li-Ti</td>
<td>2014*</td>
</tr>
</tbody>
</table>

*Expected delivery

Cell voltage monitoring is an important diagnostic tool for fuel cell stacks and battery systems

Variable-area Ejector for Hydrogen Recirculation:
- Simple PI pressure feedback control system
- No moving parts
- Very low power consumption

Patent pending
Solar Hydrogen by Thermochemical Cycles

Concentrated sunlight (2000 K)

Step 1: ZnO \rightarrow Zn + $\frac{1}{2}$ O$_2$

Step 2: Zn + H$_2$O \rightarrow ZnO + H$_2$

Tested at the Paul Scherrer Institute's high-flux solar simulator in Villigen, Switzerland (May 2012 and March 2013)

- 10 xenon-arc lamps delivering 50kW at a peak radiative flux of 11,000 suns.
H₂ Storage with Solid-State Materials

Effect of pitch

Effect of heat transfer coefficient

Internal cooling tube

Contours of H₂ storage

Non-dimensional pitch = 0.375
Filling time = 6 min

Mass of H₂ stored per unit volume of tank (g/cm³)

Convection heat transfer coefficient h (W/m²-K)

no aluminum foam is added
5% aluminum foam
10% aluminum foam

Non-dimensional pitch

Mass of H₂ stored per unit volume of tank (g/cm³)

Convection heat transfer coefficient h (W/m²-K)

no aluminum foam is added
5% aluminum foam
10% aluminum foam

Non-dimensional pitch

3 min charge

Contours of H₂ storage

Suresh Advani
Ajay Prasad
A new energy storage mechanism (Charge Close-Packed Model) is proposed to interpret anomalous capacitive behavior of energy density and ionic diffusion observed in one-body, all solid-state, sandwich-structured capacitor made from reduced graphene oxide films.

RGO – reduced graphene oxide; GO – graphene oxide
3D Resin Infusion To Simulate Wind Blade Manufacturing

The European Wind Energy Association (EWEA)

Gurit® - Break Down of a Wind Turbine Blade

The European Wind Energy Association (EWEA)

Gurit® - Break Down of a Wind Turbine Blade
Estimating Wind Turbine Drivetrain Loads

- Premature gearbox failure significantly increases cost of wind power
- It is unclear how non-ideal conditions affect drivetrain loads or reliability
- Smith et al. 2005: failure rates increase with wind shear at night
- Blade element theory: determine effect of wind shear on \textit{mean} M_x and bearing load

\[V(z) = a(b + z)^m \]

Implications:
Fatigue limit PLC-A = 184 kN (GRC standard)
Smith et al.: $m_{\text{day}} = 0.21$ and $m_{\text{night}} = 0.43$
$V_{\text{ave}} = 10 \text{ m/s} \rightarrow F = 81 \text{ kN}, T = 230 \text{ kNm} @ 22 \text{ RPM}$

\begin{align*}
\text{Day:} & \quad M_x = 254 \text{ kNm}, F_{\text{PLCA}} = 52 \text{ kN} < \text{ limit} \\
\text{Night:} & \quad M_x = 527 \text{ kNm}, F_{\text{PLCA}} = 219 \text{ kN} > \text{ limit}
\end{align*}

There is a direct and detrimental effect of wind shear on drivetrain reliability
Environmental Multiphase Flows

Approach: High-performance computing and analytical tools to understand complex multiscale fluid transport/transformation in the environment.

Specific applications:

- **Cloud physics and warm rain formation**: Effect of air turbulence on collision rates and collision efficiency of cloud droplets; impact on warm rain initiation.

- **Soil contamination and soil biodiversity**: Fate of nanoparticles released to the environment; how to model transport and retention of contaminants?

- **Industrial processing of multiphase wastes**: mixing, resuspension, sedimentation, non-Newtonian behavior, and scale-up of particle-laden flow in a controlled mixing vessel.