ILC Dover, the world’s leader in softgoods engineering, has developed a method of transporting and containing pharmaceuticals using robust polymer bags, the DoverPac® system. Team ILC Dover was tasked with redesigning the hand tool that is used to “crimp” the DoverPac®. The current tool does not provide sufficient mechanical advantage. ILC desired a new tool design with a manufacturing plan.

Problem Background

ILC Dover, the world’s leader in softgoods engineering, has developed a method of transporting and containing pharmaceuticals using robust polymer bags, the DoverPac® system.

Current Tool

Crimps for DoverPac®

Key Wants and Metrics

- **Input Force**: 59 lbs
- **Mech. Advantage**: 6:1
- **Cost**: $250
- **Grip Span**: 3.5 in.

Cost Overview

<table>
<thead>
<tr>
<th>Component</th>
<th>Method</th>
<th>Material/Investment</th>
<th>Cost</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handle & Head</td>
<td>Machined From Steel</td>
<td>Brass</td>
<td>Steel</td>
<td>E-rings, split pins, accessors, Wise</td>
</tr>
<tr>
<td>Rack</td>
<td>Cast Steel</td>
<td>Torsion Spring</td>
<td>180 Deg Angle</td>
<td>Spring</td>
</tr>
<tr>
<td>Gear</td>
<td>Cast Steel</td>
<td>48 D.P., 20 DEG. Pressure</td>
<td>#416</td>
<td>Brackets</td>
</tr>
<tr>
<td>Pins</td>
<td>Machined</td>
<td>Stainless Steel Rack</td>
<td>48 D.P., 20 DEG. Pressure</td>
<td>#416</td>
</tr>
<tr>
<td>Rings</td>
<td>Cast Steel</td>
<td>Torsion Spring</td>
<td>180 Deg Angle</td>
<td>Spring</td>
</tr>
<tr>
<td>Screws</td>
<td>Cast Steel</td>
<td>Torsion Spring</td>
<td>180 Deg Angle</td>
<td>Spring</td>
</tr>
<tr>
<td>Production Cost (Major Costs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machining</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Material》</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Parts Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturing Process Selection

A major portion of this project is the manufacturing processes involved in creating the parts. Since this is a retail product, cost is of high importance.

Performance and Validation

Experiment Set-Up

TEST 1: Mechanical Advantage

- Tool is clamped to the edge of a table with the handle hanging over the side
- Between the heads, a load cell is placed to measure the open force
- A series of weights are to be placed on the handle
- Plot input force vs. output force to determine MA

TEST 2: Maximum Input Force

- Device was placed in an Instron machine, and the force at the crossbeam was measured along the stroke length of the device.
- The peak where the crimp reaches full closure can be noted as the maximum input force needed.

Results

The Aluminum Prototype has a mechanical advantage of 6.3:1 and closes all crimp sizes within desired force target value.

Concept Generation

These initial concepts derived from benchmarking at a hardware store, the previous tool, and creative mechanisms to achieve the desired mechanical advantage and motion.

Detailed Design

The above figure displays the first iteration of the LOC'D. The motion required to close the crimps results from a ratchet and pawl system driving a pinion gear, which in turn drives a rack. The specific shape of the heads allows the crimps to be closed with the linear motion provided by the rack moving forward. Additionally, there is a release system that allows the user to disengage the pawls after closing.

Head Design

The heads were specially designed to hold the crimps in place and provide support while pushing them closed. The crimps sit side by side in the heads.

Linear Drive System

The ratchet and the gear are connected to the main pin by a keyway, which fixes their motion. A pulling pawl in the handle causes the ratchet to spin from a squeeze on the handle. After a squeeze, the handle is opened and the pawl “skips” back to the next latching point.

Later Iteration

Prototyping

Ergonomic Model

- Grown in a 3-D Printer
- Given to range of students with an ergonomics questionnaire to evaluate
- Several iterations were performed

Mechanical Model

A “2-D” simplification of the actual tool – this prototype demonstrates the motion and mechanical function of the LOC'D.

A final prototype with both ergonomic and mechanical features will be grown from engineering polymer (not shown here).

Concepts

- Gear Train
- Crimps & Casing
- Springs
- Pins
- Steel
- 60.00
- 1
- Device was placed in an Instron machine, and the force at the crossbeam
- Gear Rack
- Pinion,
- Ratchet
- Grown in a 3
- Pinion Gear
- 5.00
- Model
- Grip
- Between the heads, a load cell
- A series of weights are to be
- 30.00
- Load Cell
- 30.00
- [xxxx]
- this prototype demonstrates
- Cost per Part/Hour
- 25.49
- …
- Several iterations were performed
- Total Parts Cost
- Total Cost
- 222.96
- The Aluminum Prototype has a mechanical advantage of 6.3:1 and closes all crimp sizes within desired force target value.