Project Scope:
- Improve ILC's Gas Mask Assembly Line Efficiency
- Automate Buckle Sorting Step
 - Take Buckles From Box and Place with Correct Orientation onto Spindle
 - Correct Orientation is defined by:
 - Wavy sides of buckle frames, Sliders on one side, Slider crimp gaps facing same direction
 - No Unattended Operation
 - No Damage to Black Oxide Coating
 - No Physical Damage to Buckle
 - Our Task:
 - Categorize gates into Priorities (A,B,C); Bring "A" models to Full Prototype; Bring "B" models to Full Design & Model; Bring "C" models to Full Design + Rough Model
 - Big Arrows show full prototypes

Test Methods:
Crump Detection
- Measure time taken for slider orientation to be detected
- Measure success ratio as correct detection/processing
- Configure timings for actuator and wire wheel
- Measure rate that buckles fill up queue

In Plane Orientation
- Determine optimal brush rpm speed
- Determine optimal brush shape
- Record success of gate at processing different buckle clump sizes
- Success defined by no jamming in subsequent funnel

Planning Stage
- Synthesize wants/metrics/constraints to gain understanding of problem.

<table>
<thead>
<tr>
<th>Wants</th>
<th>Metrics/Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orient Correctly on Spindle</td>
<td>> 5,500 buckles per 7.5 hour day</td>
</tr>
<tr>
<td>Don't damage Buckle</td>
<td>Approval by ILC Safety Manager</td>
</tr>
<tr>
<td>Operate Unattended</td>
<td>Fit in full-size truck bed</td>
</tr>
<tr>
<td>Easily Serviceable</td>
<td>No deformation, No scratches</td>
</tr>
<tr>
<td>Work without undue maintenance</td>
<td>99.96% buckle loading accuracy</td>
</tr>
<tr>
<td>Cost < task</td>
<td><60 db noise</td>
</tr>
<tr>
<td>Integrate easily</td>
<td></td>
</tr>
</tbody>
</table>

Concept Selection Stage
- Concentrate on Realistic Concepts
- BRAINSTORM

Prototyping and Testing Stage:
- Drawing Package created that consists of 6 specific gates
 - 2 gates chosen to be the focus of attention
 - models split into A,B,C categories based on importance
 - A models - Crimp detection & In Plane Orientation
 - B models - Hopper & Intermittent Feed
 - C models - C.O.G. Rail & Spindle Loader
 - Working prototypes created for the A models
 - Physical models created for the B models
 - CAD drawings created for the C models
 - Test methods created for the A models

Thanks To ILC-Dover:
Mr. John Folke, Mr. Steve Kosc, Mr. Ralph Weis, Mr. Eric Kazimir
(and at UD: Dr. Michael Keefe, Mr. Steve Beard)