PROJECT OBJECTIVE
To create a device that measures the width of fabric laminates to an accuracy of 1 mm.

CURRENT PROCEDURE
Tape measure currently used to measure laminate width.

Current Procedure Leads to
- Inaccurate Measurements
- Loss of Profits
- Decrease in Quality Assurance
- Poor Ergonomics
- Time Consumption of Product Specialist

DESIGN DRIVERS
The final design was driven by the top customer wants, metrics, and corresponding target values.

FINAL SOLUTION

Concept
- Current Framework
- Servo Motor
- Linear Actuator
- Mounting Brackets

Solution Features
- Belt-driven Linear Actuator
- Servo Motor
- Encoder Output
- Hand-Held Controller
- Laser Marking System

Solution Benefits
- More Accurate Measurement
- Non-obstructive
- More Ergonomic
- Increased Repeatability
- Able to Integrate to Computer

Prototype
- Left Bracket & Servo Motor
- Laser Source & Actuator
- Right Bracket
- Hand-Held Controller
- Cross-Hair Laser Mark

TESTING & VALIDATION

Procedure
Preliminary testing of the new device involves measuring the two primary types of laminates using three different operators.

The data from the testing was used to perform a statistical analysis.

Results & Conclusions
According to the statistical analysis, the prototype is about 4.7 times more accurate, at 1.016 mm compared to 4.76 mm using current methods.

ACKNOWLEDGEMENTS
The team would like to thank all those helpful in the success of the project. Special thanks to Jim Everhart, Tom Hocker, and Julia Levinson.