Five ME Alums to be Honored with Career Awards

From doctors to entrepreneurs, honorees exemplify breadth of ME discipline

Five alumni who graduated between 1968 and 1987 have been chosen to receive this year’s Distinguished Career Alumni Award. While all have degrees in mechanical engineering, their fields of employment range from aerospace to medicine, and their areas of expertise run from venture capital generation to orthopedic surgery. They have worked for companies, universities, and hospitals, as well as in private practice.

“These individuals were selected from a very qualified group of people,” says Bill Wagamon (BME1962), chair of the sub-committee that presented the slate of nominees for consideration by the selection panel.

“They are working in a variety of fields, but their level of experience is significant, and their collective accomplishments are extraordinary. We have doctors, inventors, and corporate officers in this group, and we’re very honored that they’ve agreed to accept this award and join us in April for our fourth annual business and technology conference.”

Brief biographies of the five winners appear below.

Raymond V. Feehery, Jr., earned a bachelor’s degree in Mechanical Engineering Administration from the University of Delaware in 1974. He went on to earn an M.S. in Biomechanics at Penn State and a D.P.M. from the Temple University of Podiatric Medicine in Philadelphia. Feehery has a private practice in the Wilmington, Delaware area and is an Adjunct Professor in the Department of Orthopedics at the Pennsylvania College of Podiatric Medicine and in the Department of Physical Therapy at the University of Delaware.

Feehery lectures frequently at local, regional, and national meetings on topics primarily related to biomechanics and sports medicine. He has won several awards for his contributions to education, and he has published a number of articles in professional and medical journals.

Feehery’s personal interests include sports, primarily distance running, swimming, and involvement in youth soccer and basketball. He is an active runner himself as well as a critical resource to the running community. Hundreds of athletes in the northern Delaware area wear orthotics prescribed by Feehery.

“Ray Feehery, being a runner himself, understands that runners want to keep running,” says Dave McCorquodale, a local runner. “While conducting a successful podiatric practice, Ray always takes the time to evaluate the needs of each individual he treats. When he’s out on the trails of White Clay Creek State Park, he’s no longer Dr. Feehery, but one’s equal, another runner.”

Fiehery serves as Director of FIT FEET for Special Olympics Delaware and as a consultant to the Delaware State Police. He recently completed the Dublin Marathon as part of the Leukemia and Lymphoma Team in Training Program, finishing in a time of four hours and 25 minutes.

“I feel lucky that I have been able to combine my passion for running and sports with my education and training in engineering, biomechanics, and sports medicine,” Feehery says. “It has provided me with the opportunity to help people every day to walk and run with less risk of injury, not only to their feet, but also to their knees, hips, and lower back. I truly feel like a good mechanic who tries to keep people on the go.”

Fiehery and his wife, Christine, have two sons and a daughter ranging in age from 18 to 22. Their oldest daughter, Kaitlin, graduated from UD in 2007.

James J. Gitney (BME1978) is President and Founder of Group 50 Consulting in Los Angeles, California. Established four years ago, the company focuses on assisting companies with “special needs”—e.g., those that are under stress, undergoing mergers, or attempting to improve the cost-effectiveness of their supply chains. Gitney, who holds an MBA in Finance and Strategic Planning from Cannon University in addition to his ME degree, is also head of Champion Arrowhead, LLC, which manufactures brass plumbing and irrigation products.

Gitney started out at UD as an accounting major but switched to engineering because he “wanted to understand why things do the things they do.”

“Going from business to engineering was doing things backwards,” Gitney says, “and since then, my whole career has pretty much involved doing things backwards.”

He has never regretted the switch. “The single most important thing that an engineering education provides is a way to think,” he says. “I’ll put an engineer in any job because I know how engineers think.”

Gitney started his career focusing on operations and supply chain issues and later moved into the sales and marketing areas. “Knowing about how to market and sell, combined with understanding how things work, has prepared me to do almost anything,” he says.

During his 25-year career, Gitney has worked with such highly respected companies as GE, Black & Decker, Sunbeam, and Rain Bird. He had major roles in launching Snake Light®, DustBuster®, Steam Master® Iron, Grillmaster®, and various irrigation products. He has managed operating budgets as large as $650M and organizations with more than 5,000 people.

Gitney found himself needing a change from the corporate world at the same time that it was becoming increasingly difficult for small companies to afford in-house experts to direct their business operations. His company fills a need for these organizations who wish to hire such experts on a consulting basis.

Gitney recalls that his professor in the Intro to ME course told the class “If you learn just one thing this semester, remember that reality is just a special case of the theoretical.”

“I’ve applied that throughout my career,” Gitney says. “Whether you’re reengineering business processes or engineering products, it all follows the
same set of rules—everything follows theory."

And even though he switched from accounting to engineering in his choice of major, Gitney still understands that “everything you do should be based on an analysis of the numbers.”

“It doesn’t matter whether you’re talking about sales trends or engineering equations,” he says, “you have to look at the numbers.”

Gitney has made a number of career changes throughout his working life, but two things have always driven him: “I need to get up in the morning and look forward to what I’m going to do. I’ve left jobs because I wasn’t having fun. And it was also important to me to know that what I was doing was meeting the needs of my family.”

Those two criteria may not be intuitively obvious as the basis for career success, but they’ve certainly worked for Jim Gitney.

Gitney lives in Los Angeles, California, with his Cheri Jo. The couple has three grown children.

David Meyers (BME'1981), Chief Operating Officer at Apogee Technology, a publicly traded technology company in Massachusetts that is developing drug delivery and sensor systems based on MEMS (Microelectrical Mechanical Systems) technology. He has been with the company since 1996 working in roles from design engineering, business development and corporate management. During this period the company received an award in 2004 as the fastest growing technology company in New England and was listed on the American Stock Exchange.

Prior to that, he worked primarily in the aerospace industry, first for Rockwell on the Space Shuttle and Space Station in the control systems area and later for Northrop developing aircraft and missile navigation systems.

Meyers credits his unique and interesting career to his “good fortune in working in a range of engineering and business roles across diverse fields including aerospace, semiconductor, sensor systems and drug delivery.” Meyers’s accomplishments have been in both the technical and business arenas. He not only is inventor on seven patents and patent applications in the areas of drug delivery, MEMS sensors and audio signal processing, but has also been the author on papers related to navigation and aircraft communication architectures. Recently he has hired a team of leading scientists to develop the company’s MEMS-based transdermal drug delivery system for vaccines and other pharmaceuticals, acquired a MEMS company and established a new division within Apogee, and raised equity capital by developing and presenting the company’s strategic business plans to the investment community and shareholders.

“In April of 1981,” he recalls, “I was ready to accept one of the two job offers I had received through the interview program at Delaware when I saw the Space Shuttle launch. At that point I knew exactly what I wanted to do. I declined my current job offers and began applying to Space Shuttle contractors, with the goal of working for Rockwell International, the primary contractor for the program. A long summer followed, accentcd by growing parental and family pressures to get a job.”

“At the end of August,” he continues, “I finally received an offer from Rockwell based upon my fluid dynamics focus at Delaware and the passion expressed in my application letter. I learned early that if you really care about something, people will believe in you enough to hire you over the telephone.”

Apogee recently moved from developing and marketing its proprietary all-digital audio amplifier integrated circuits to its current focus on drug delivery and sensor based health monitoring systems. “These new business endeavors are very exciting,” Meyers says, “and I find myself again starting from scratch to learn and develop new technologies in a new field. The novel intelligent sensing systems we’re creating now have the potential to improve the security and health of the elderly in the future.”

Meyers lives in Walpole, Mass., with his wife and three children.

Martha Meaney Murray M.D. (BME'1987) is an Assistant Professor in Orthopaedic Surgery at Children’s Hospital Boston. She earned her M.D. at the University of Pennsylvania after completing an M.S. degree in materials science and engineering at Stanford University.

Murray is currently an orthopaedic surgeon who specializes in sports medicine. Her research focuses on developing new and improved treatment of injuries of the anterior cruciate ligament (ACL).

With support from the National Institutes of Health, the National Football League, and the Orthopaedic Research and Education Foundation, Murray and her colleagues at Children’s Hospital are developing a new approach to (ACL) repair. Each year, she points out, some 250,000 people tear the ACL in their knees. Teen-aged girls are five times more likely than boys to injure their knees playing sports, and fourteen years after treatment, almost eighty percent of patients with an ACL tear will develop premature osteoarthritis. Murray would like to do more for her young patients with ACL injuries. “It worries me that their risk for arthritis is so high,” she says. “If you’re only 14, getting arthritis 14 years later is a big problem.”

While in graduate school, Murray had a friend who tore his ACL. He had a procedure to treat the injury which involved removing the torn ligament, harvesting a graft of tendon and passing the tendon through bone tunnels to replace the ligament, a procedure called ACL reconstruction, the current gold standard of treatment for these injuries. As an engineer, Murray wondered why ACL tears couldn’t be successfully stitched back together, allowing a person to who could keep his or her own ACL rather than have it replaced. As a PhD candidate, Murray wanted to do her thesis on ACL healing. But at the time, 15 years ago, engineering programs had little interest in biomedicine. “I couldn’t find a faculty advisor for the project,” Murray says, “so I went to medical school so I wouldn’t have to.”

Over the past fifteen years, she and her team have been conducting research into finding a better “fix” than the traditional replacement surgery. Using novel technology, she and her team are working to find a way to repair the
injury via two small incisions, using a camera to view the tear and a “gun” to squirt in a gel that can stimulate healing of the torn ligament. Her group is also working on various enhancements to the gel in an effort to speed the healing process.

Murray is currently the recipient of the ACL Study Group Traveling Scientist Award, an award that has funded her to travel and speak about her work at locations throughout the world. She has also received the American Orthopaedic Society for Sports Medicine (AOSSM) Cabaud Award and the American Orthopaedic Association Travel Award, both for her research on the ACL—as well as the first-place award for her senior design project in ME at the University of Delaware in 1987.

Murray has published 23 papers on her work in medical and professional journals and is one of only a handful of orthopaedic surgeons who are currently funded with multiple large grants from the NIH.

She lives outside Boston with her husband, Mike, the clinical chief of Genetics at the Brigham and Women’s Hospital, and their three children.

Oren B. Phillips (BME1968) was appointed Chairman of the Board of Trustees of the Utah State University Research Foundation (USURF) in December 2006. USURF, with its Space Dynamics Laboratory and Calibration Facility, is an international leader in sensor and calibration technology.

Phillips retired in 2004 as Vice President of Business Development for ATK Thiokol Propulsion and Vice President and Board Director of Thiokol Technologies International.

He joined Thiokol Chemical Corporation’s Government Systems Division in Elkton, Maryland, in 1967, and spent his entire career with the company, working at various sites and on a variety of projects.

“When I graduated in 1968,” he says, “the country was very excited about the space program, and by the following year, we would be sending men to the moon. At Thiokol, I had the opportunity to lead the design, development, and marketing of the STAR™ series of satellite and launch vehicle solid propulsion systems, which were instrumental in placing 90 to 95 percent of spacecraft into orbit.”

“This was the start of the satellite era,” Phillips continues, “and space was beginning to be utilized as a tool for weather, communications, and observation functions. It was a very exciting time for me because we were launching something from somewhere in the world almost every week.” In addition to multiple sites in the U.S., he traveled to Russia, Sweden, Japan, and China for satellite launches during that time.

Phillips, who has published a number of technical papers and served on a number of prominent boards and foundations, attributes his success to his education. “Engineering is the best training program in the world,” he says, “because it enables you to take problems that seem insurmountable, break them down into manageable pieces, and find solutions. And I’m not talking about just engineering problems, but problems of any kind—from legal to medical.”

When asked to take over a business development effort within Thiokol earlier in his career, Phillips admits that his first reaction was “I’ve never done this—I build motors for satellite launches.” But he quickly learned that problems could be solved by putting engineering teams together and getting the company to invest in worthwhile ideas.

He also learned, after being in and out of project management and marketing over a period of several years, that even failures present opportunities. He was instrumental in getting the space program back on its feet after two major satellite failures as well as the deadly crash of the Challenger Shuttle. The latter led him to Utah, where he retired and joined USURF two decades later.

When asked what advice he would give to students just starting out, Phillips responds, “You don’t know where your career is going to go or what opportunities may present themselves to you. Just view engineering as a great training program that will give you the tools to do whatever you want.”

A native of Wilmington, Delaware, Phillips and his wife, Judy, now live in Ogden, Utah. Their daughter, Ashley, is an engineer living and working in Connecticut.